New classes of analytic functions determined by a modified differential-difference operator in a complex domain

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Classes of Analytic Functions Associated by a Parametric Linear Operator in a Complex Domain

The present paper deals with some geometric classes of analytic functions, such as starlike, convex and bounded turning property in a complex domain. These classes are defined by a new linear operator in the normalized space of analytic functions. The linear operator is introduced by a convolution of Szego function involving parametric coefficients type Laguerre polynomial, with the normalized ...

متن کامل

On a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator

In this paper we obtain coefficient characterization‎, ‎extreme points and‎ ‎distortion bounds for the classes of harmonic $p-$valent functions‎ ‎defined by certain modified operator‎. ‎Some of our results improve‎ ‎and generalize previously known results‎.

متن کامل

on a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator

in this paper we obtain coefficient characterization‎, ‎extreme points and‎ ‎distortion bounds for the classes of harmonic $p-$valent functions‎ ‎defined by certain modified operator‎. ‎some of our results improve‎ ‎and generalize previously known results‎.

متن کامل

Majorization for certain classes of analytic functions defined by a new operator

In the present paper, we investigate the majorization properties for certain classes of multivalent analytic functions defined by a new operator. Moreover, we pointed out some new and known consequences of our main result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Karbala International Journal of Modern Science

سال: 2017

ISSN: 2405-609X

DOI: 10.1016/j.kijoms.2017.02.005